SEJARAH ALJABAR DARI MASA BABILONIA

 

Sejarah tentang AL – Khawarizmi

 

Al Khawarizmi memiliki namalengkap Muḥammad bin Mūsā Al Khawārizmī (Arab: محمد بن موسى الخوارزمي). Beliau seorang ahli matematika, astronomi, astrologi, dan geografi yang berasal dari Persia. Lahir sekitar tahun 780 di Khwārizm (sekarang Khiva, Uzbekistan) dan wafat sekitar tahun 850. Hampir sepanjang hidupnya, ia bekerja sebagai dosen di Sekolah Kehormatan di Baghdad.

Al Khawarizmi Bapak Algoritma

Istilah algoritma, mungkin bukan sesuatu yang asing bagi kita. Ditinjau dari asal usul katanya, kata ‘Algoritma’ mempunyai sejarah yang agak aneh. Orang hanya menemukan kata Algorism yang berarti proses menghitung dengan angka Arab. Seseorang dikatakan ‘Algorist’ jika menghitung menggunakan angka Arab. Para ahli bahasa berusaha menemukan asal kata ini namun hasilnya kurang memuaskan. Akhirnya para ahli sejarah matematika menemukan asal kata tersebut yang berasal dari nama seorang matematikawa muslim. Dialah Al Khawarizmi dibaca orang barat menjadi Algorism. Dalam kamus besar bahasa Indonesia, algoritma berarti prosedur sistematis untuk memecahkan masalah matematis dalam langkah-langkah terbatas.

Karya Aljabarnya yang paling monumental berjudul Al Mukhtasar fi Hisab Al Jabr wal Muqabalah (Ringkasan Perhitungan Aljabar dan Perbandingan). Dalam buku itu diuraikan pengertian-pengertian geometris. Al Khawarizmi juga menyumbangkan teorema segitiga sama kaki yang tepat, perhitungan tinggi serta luas segitiga, dan luas jajaran genjang serta lingkaran. Dengan demikian, dalam beberapa hal al-Khawarizmi telah membuat aljabar menjadi ilmu eksak.

Buku itu diterjemahkan di London pada 1831 oleh F. Rosen, seorang matematikawan Inggris. Kemudian diedit ke dalam bahasa Arab oleh Ali Mustafa Musyarrafa dan Muhammad Mursi Ahmad, ahli matematika Mesir, pada 1939. Sebagian dari karya Al Khawarizmi itu pada abad ke-12 juga diterjemahkan oleh Robert, matematikawan dari Chester, Inggris, dengan judul Liber Algebras et Al-mucabola (Buku Aljabar dan Perbandingan), yang kemudian diedit oleh L.C. Karpinski, seorang matematikawan dari New York, Amerika Serikat. Gerard dari Cremona (1114–1187) seorang matematikawan Italia, membuat versi kedua dari buku Liber Algebras dengan judul De Jebra et Almucabola (Aljabar dan Perbandingan). Buku versi Gerard ini lebih baik dan bahkan mengungguli buku F. Rozen.

Dalam bukunya, matematikawan muslim ini memperkenalkan kepada dunia ilmu pengetahuan angka 0 (nol) yang dalam bahasa Arab disebut sifr. Sebelum Al Khawarizmi memperkenalkan angka nol, para ilmuwan mempergunakan abakus, semacam daftar yang menunjukkan satuan, puluhan, ratusan, ribuan, dan seterusnya, untuk menjaga agar setiap angka tidak saling tertukar dari tempat yang telah ditentukan dalam hitungan.

Akan tetapi, hitungan seperti itu tidak mendapat sambutan dari kalangan ilmuwan Barat ketika itu, dan mereka lebih tertarik untuk mempergunakan raqam al-binji (daftar angka Arab, termasuk angka nol), hasil penemuan Al Khawarizmi. Dengan demikian, angka nol baru dikenal dan dipergunakan orang Barat sekitar 250 tahun setelah ditemukan al-Khawarizmi. Dari beberapa bukunya, al-Khawarizmi mewariskan beberapa istilah matematika yang masih banyak dipergunakan hingga kini. Seperti sinus, kosinus, tangen dan kotangen.

Karya-karya matematikawan muslim ini sebenarnya banyak mengacu pada tulisan mengenai aljabar yang disusun oleh Diophantus (250 SM) dari Yunani. Namun, dalam meneliti buku-buku aljabar tersebut, al-Khawarizmi menemukan beberapa kesalahan dan permasalahan yang masih kabur. Kesalahan dan permasalahan itu diperbaiki, dijelaskan, dan dikembangkan oleh al-Khawarizmi dalam karya-karya aljabarnya. Oleh sebab itu, tidaklah mengherankan apabila ia dijuluki ”Bapak Aljabar.”

Bahkan, menurut Gandz, matematikawan Barat dalam bukunya The Source of Al Khawarizmi’s Algebra, Al Khawarizmi lebih berhak mendapat julukan “Bapak Aljabar” dibandingkan dengan Diophantus, karena dialah orang pertama yang mengajarkan aljabar dalam bentuk elementer serta menerapkannya dalam hal-hal yang berkaitan dengannya.

Di bidang ilmu ukur, al-Khawarizmi juga dikenal sebagai peletak rumus ilmu ukur dan penyusun daftar logaritma serta hitungan desimal. Namun, beberapa sarjana matematika Barat, seperti John Napier (1550–1617) dan Simon Stevin (1548–1620), menganggap penemuan itu merupakan hasil pemikiran mereka.

Di dunia Barat, Ilmu Matematika lebih banyak dipengaruhi oleh karya Al Khawarizmi dibanding karya para penulis pada Abad Pertengahan. Masyarakat modern saat ini berutang budi kepada Al Khawarizmi dalam hal penggunaan bilangan Arab. Notasi penempatan bilangan dengan basis 10, penggunaan bilangan irasional dan diperkenalkannya konsep Aljabar modern, membuatnya layak menjadi figur penting dalam bidang Matematika dan revolusi perhitungan di Abad Pertengahan di daratan Eropa. Dengan penyatuan Matematika Yunani, Hindu dan mungkin Babilonia, teks Aljabar merupakan salah satu karya Islam di dunia Internasional

Karya Al Khawarizmi di Bidang Astronomi dan Geografi

Di bawah Khalifah Ma’mun, sebuah tim astronom yang dipimpinnya berhasil menentukan ukuran dan bentuk bundaran bumi. Penelitian itu dilakukan di Sanjar dan Palmyra. Hasilnya hanya selisih 2,877 kaki dari ukuran garis tengah bumi yang sebenarnya. Sebuah perhitungan luar biasa yang dapat dilakukan Al Khawarizmi pada saat itu. Astronom muslim ini juga menyusun buku tentang penghitungan waktu berdasarkan bayang-bayang matahari.

Buku geografinya yang mahsyur adalah Kitab Surah Al Ard (Buku Gambaran Bumi). Buku itu memuat daftar koordinat beberapa kota penting dan ciri-ciri geografisnya. Kitab itu secara tidak langsung mengacu pada buku Geography yang disusun oleh Claudius Ptolomaeus (100–178), ilmuwan Yunani. Namun beberapa kesalahan dalam buku tersebut dikoreksi dan dibetulkan oleh Al Khawarizmi dalam bukunya Zij As Sindhind sebelum ia menyusun Kitab Surah Al Ard

 

Riwayat Al-jabar babyloniaRiwayat Diophantus

Sekitar tahun 250 seorang matematikawan Yunani yang bermukim di Alexandria melontarkan problem matematika yang tertera di atas batu nisannya. Tidak ada catatan terperinci tentang kehidupan Diophantus, namun meninggalkan problem tersohor itu pada Palatine Anthology, yang ditulis setelah meninggalnya. Pada batu nisan Diophantus tersamar (dalam persamaan) umur Diophantus.

Seperenam kehidupan yang diberikan Tuhan kepadaku adalah masa muda. Setelah itu, seperduabelasnya, cambang dan berewokku mulai tumbuh. Ditambah sepertujuh masa hidupku untuk menikah, dan tahun kelima mempunyai anak. Sialnya, setengah waktu dari kehidupanku untuk mengurus anak. Empat tahun kegunakan bersedih.
Berapa umur Diophantus? *)

Dugaan tentang kehidupan Diophantus cukup misterius. Kita hanya dapat menduga lewat dua fakta yang menarik sebelum menarik kesimpulan. Pertama, dia mengutip tulisan Hypsicles yang diketahui hidup sekitar tahun 150 SM. Kedua, tulisan Diophantus dikutip oleh Theon dari Alexandria. Prakiraan hidup Theon, diacu dari gerhana matahari yang terjadi pada 16 Juni 364. Dengan dua fakta ini diperkirakan Diophantus hidup antara tahun 150 SM sampai tahun 364. Para peneliti, menyimpulkan bahwa diperkirakan Diophantus hidup sekitar tahun 250.

Karya Diophantus

Diophantus menulis Arithmetica, yang mana isinya merupakan pengembangan aljabar yang dilakukan dengan membuat beberapa persamaan. Persamaan-persamaan tersebut disebut persamaan Diophantin, digunakan pada matematika sampai sekarang.
Diophantus menulis lima belas namun hanya enam buku yang dapat dibaca, sisanya ikut terbakar pada penghancuran perpustakaan besar di Alexandria. Sisa karya Diophantus yang selamat sekaligus merupakan teks bangsa Yunani yang terakhir yang diterjemahkan. Buku terjemahan pertama kali dalam bahasa Latin diterbitkan pada tahun 1575. Prestasi Diophantus merupakan akhir kejayaan Yunani kuno.
[Pierre] Fermat mengetahui buku Diophantus lewat terjemahan Clause Bachet yang diterbitkan tahun 1621. Problem kedelapan pada buku kedua tentang cara membagi akar bilangan tertentu menjadi jumlah dua sisi panjang. Rumus Pythagoras sudah dikenal orang Babylonia 2000 tahun silam – memberi inspirasi bagi Fermat untuk menuliskan TTF /Theorema Terakhir Fermat (Fermat Last Theorem).
Susunan dalam Arithmetica tidak secara sistimatik operasi-operasi aljabar, fungsi-fungsi aljabar atau solusi terhadap persamaan-persamaan aljabar. Di dalamnya terdapat 150 problem, semua diberikan lewat contoh-contoh numerik yang spesifik, meskipun barangkali metode secara umum juga diberikan. Sebagai contoh, persamaan kuadrat mempunyai hasil dua akar bilangan positif dan tidak mengenal akar bilangan negatif. Diophantus menyelesaikan problem-problem menyangkut beberapa bilangan tidak diketahui dan dengan penuh keahlian menyajikan banyak bilangan-bilangan yang tidak diketahui.
Contoh: Diketahui bilangan dengan jumlah 20 dan jumlah kuadratnya 208; angka bukan diubah menjadi x dan y, tapi ditulis sebagai 10 + x dan 10 – x (dalam notasi modern). Selanjutnya, (10 + x)² + (10 – x)² = 208, diperoleh x = 2 dan bilangan yang tidak diketahui adalah 8 dan 12.

Sumbangsih Diophantus

Seringkali disebut dengan ”Bapak” aljabar Babylonia. Karya-karyanya tidak hanya mencakup tipe material tertentu yang membentuk dasar aljabar modern; bukan pula mirip dengan aljabar geometri yang dirintis oleh Euclid.
Diophantus mengembangkan konsep-konsep aljabar Babylonia dan merintis suatu bentuk persamaan sehingga bentuk persamaan seringkali disebut dengan persamaan Diophantine (Diophantine Equation) menunjuk bahwa Diophantus cukup memberi sumbangsih bagi perkembangan matematika.

 Diophantus

Sekitar tahun 250 seorang matematikawan Yunani yang bermukim di Alexandria melontarkan problem matematika yang tertera di atas batu nisannya. Tidak ada catatan terperinci tentang kehidupan Diophantus, namun meninggalkan problem tersohor itu pada Palatine Anthology, yang ditulis setelah meninggalnya. Pada batu nisan Diophantus tersamar (dalam persamaan) umur Diophantus.

Seperenam kehidupan yang diberikan Tuhan kepadaku adalah masa muda. Setelah itu, seperduabelasnya, cambang dan berewokku mulai tumbuh. Ditambah sepertujuh masa hidupku untuk menikah, dan tahun kelima mempunyai anak. Sialnya, setengah waktu dari kehidupanku untuk mengurus anak. Empat tahun kegunakan bersedih.
Berapa umur Diophantus? *)

Dugaan tentang kehidupan Diophantus cukup misterius. Kita hanya dapat menduga lewat dua fakta yang menarik sebelum menarik kesimpulan. Pertama, dia mengutip tulisan Hypsicles yang diketahui hidup sekitar tahun 150 SM. Kedua, tulisan Diophantus dikutip oleh Theon dari Alexandria. Prakiraan hidup Theon, diacu dari gerhana matahari yang terjadi pada 16 Juni 364. Dengan dua fakta ini diperkirakan Diophantus hidup antara tahun 150 SM sampai tahun 364. Para peneliti, menyimpulkan bahwa diperkirakan Diophantus hidup sekitar tahun 250.

atan terperinci tentang kehidupan Diophantus, namun meninggalkan problem tersohor itu pada Palatine Anthology, yang ditulis setelah meninggalnya. Pada batu nisan Diophantus tersamar (dalam persamaan) umur Diophantus.

Seperenam kehidupan yang diberikan Tuhan kepadaku adalah masa muda. Setelah itu, seperduabelasnya, cambang dan berewokku mulai tumbuh. Ditambah sepertujuh masa hidupku untuk menikah, dan tahun kelima mempunyai anak. Sialnya, setengah waktu dari kehidupanku untuk mengurus anak. Empat tahun kegunakan bersedih.
Berapa umur Diophantus? *)

Dugaan tentang kehidupan Diophantus cukup misterius. Kita hanya dapat menduga lewat dua fakta yang menarik sebelum menarik kesimpulan. Pertama, dia mengutip tulisan Hypsicles yang diketahui hidup sekitar tahun 150 SM. Kedua, tulisan Diophantus dikutip oleh Theon dari Alexandria. Prakiraan hidup Theon, diacu dari gerhana matahari yang terjadi pada 16 Juni 364. Dengan dua fakta ini diperkirakan Diophantus hidup antara tahun 150 SM sampai tahun 364. Para peneliti, menyimpulkan bahwa diperkirakan Diophantus hidup sekitar tahun 250.

Diophantus dan aljabar

Dalam Arithmetica, meski bukan merupakan buku teks aljabar akan tetapi didalamnya terdapat problem persamaan x² = 1 + 30y² dan x² = 1 + 26y², yang kemudian diubah menjadi “persamaan Pell” x² = 1 + py²; sekali lagi didapat jawaban tunggal, karena Diophantus adalah pemecah problem bukan menciptakan persamaan dan buku itu berisikan kumpulan problem dan aplikasi pada aljabar. Problem Diophantus untuk menemukan bilangan x, y, a dalam persamaan x² + y² = a² atau x³ + y³ = a³, kelak mendasari Fermat mencetuskan TTF (Theorema Terakhir Fermat). Prestasi ini membuat Diophantus seringkali disebut dengan ahli aljabar dari Babylonia dan karyanya disebut dengan aljabar Babylonia.

*) Misal umur x, sehingga x = 1/6x + 1/12x + 1/7x + 5 + ½x + 4 akan diperoleh x = 84, umur Diophantus.


Sumbangsih Diophantus

Seringkali disebut dengan ”Bapak” aljabar Babylonia. Karya-karyanya tidak hanya mencakup tipe material tertentu yang membentuk dasar aljabar modern; bukan pula mirip dengan aljabar geometri yang dirintis oleh Euclid.
Diophantus mengembangkan konsep-konsep aljabar Babylonia dan merintis suatu bentuk persamaan sehingga bentuk persamaan seringkali disebut dengan persamaan Diophantine (Diophantine Equation) menunjuk bahwa Diophantus cukup memberi sumbangsih bagi perkembangan matematika.

Muḥammad bin Mūsā al-Khawārizmī

Muhammad bin Mūsā al-Khwārizmī
Sebuah perangko peringatan yang diterbitkan pada 6 September 1983 oleh Uni Sovyet, untuk memperingati 1200 tahun al-Khwārizmī.
Lahir c. 780
Xorazm, Uzbekistan

Muḥammad bin Mūsā al-Khawārizmī (Arab: محمد بن موسى الخوارزمي) adalah seorang ahli matematika, astronomi, astrologi, dan geografi yang berasal dari Persia. Lahir sekitar tahun 780 di Khwārizm (sekarang Khiva, Uzbekistan) dan wafat sekitar tahun 850 di Baghdad. Hampir sepanjang hidupnya, ia bekerja sebagai dosen di Sekolah Kehormatan di Baghdad

Buku pertamanya, al-Jabar, adalah buku pertama yang membahas solusi sistematik dari linear dan notasi kuadrat. Sehingga ia disebut sebagai Bapak Aljabar. Translasi bahasa Latin dari Aritmatika beliau, yang memperkenalkan angka India, kemudian diperkenalkan sebagai Sistem Penomoran Posisi Desimal di dunia Barat pada abad ke 12. Ia merevisi dan menyesuaikan Geografi Ptolemeus sebaik mengerjakan tulisan-tulisan tentang astronomi dan astrologi.

Kontribusi beliau tak hanya berdampak besar pada matematika, tapi juga dalam kebahasaan. Kata Aljabar berasal dari kata al-Jabr, satu dari dua operasi dalam matematika untuk menyelesaikan notasi kuadrat, yang tercantum dalam buku beliau. Kata logarisme dan logaritma diambil dari kata Algorismi, Latinisasi dari nama beliau. Nama beliau juga di serap dalam bahasa Spanyol Guarismo dan dalam bahasa Portugis, Algarismo yang berarti digit.

Sedikit yang dapat diketahui dari hidup beliau, bahkan lokasi tempat lahirnya sekalipun. Nama beliau mungkin berasal dari Khwarizm (Khiva) yang berada di Provinsi Khurasan pada masa kekuasaan Bani Abbasiyah (sekarang Xorazm, salah satu provinsi Uzbekistan). Gelar beliau adalah Abū ‘Abdu llāh (Arab: أبو عبد الله) atau Abū Ja’far.

Sejarawan al-Tabari menamakan beliau Muhammad bin Musa al-Khwārizmī al-Majousi al-Katarbali (Arab: محمد بن موسى الخوارزميّ المجوسيّ القطربّليّ). Sebutan al-Qutrubbulli mengindikasikan beliau berasal dari Qutrubbull, kota kecil dekat Baghdad.

Tentang agama al-Khawārizmī’, Toomer menulis:

Sebutan lain untuk beliau diberikan oleh al-Ṭabarī, “al-Majūsī,” ini mengindikasikan ia adalah pengikut Zoroaster.Ini mungkin terjadi pada orang yang berasal dari Iran. Tetapi, kemudian buku Al-Jabar beliau menunujukkan beliau adalah seorang Muslim Ortodok,jadi sebutan Al-Tabari ditujukan pada saat ia muda, ia beragama Majusi.

Dalam Kitāb al-Fihrist Ibnu al-Nadim, kita temukan sejarah singkat beliau, bersama dengan karya-karya tulis beliau. Al-Khawarizmi menekuni hampir seluruh pekerjaannya antara 813833. setelah Islam masuk ke Persia, Baghdad menjadi pusat ilmu dan perdagangan, dan banyak pedagang dan ilmuwan dari Cina dan India berkelana ke kota ini, yang juga dilakukan beliau. Dia bekerja di Baghdad pada Sekolah Kehormatan yang didirikan oleh Khalifah Bani Abbasiyah Al-Ma’mun, tempat ia belajar ilmu alam dan matematika, termasuk mempelajari terjemahan manuskrip Sanskerta dan Yunani.

Karya terbesar beliau dalam matematika, astronomi, astrologi, geografi, kartografi, sebagai fondasi dan kemudian lebih inovatif dalam aljabar, trigonometri, dan pada bidang lain yang beliau tekuni. Pendekatan logika dan sistematis beliau dalam penyelesaian linear dan notasi kuadrat memberikan keakuratan dalam disiplin aljabar, nama yang diambil dari nama salah satu buku beliau pada tahun 830 M, al-Kitab al-mukhtasar fi hisab al-jabr wa’l-muqabala (Arab الكتاب المختصر في حساب الجبر والمقابلة) atau: “Buku Rangkuman untuk Kalkulasi dengan Melengkapakan dan Menyeimbangkan”, buku pertama beliau yang kemudian diterjemahkan ke dalam bahasa Latin pada abad ke-12.

Pada buku beliau, Kalkulasi dengan angka Hindu, yang ditulis tahun 825, memprinsipkan kemampuan difusi angka India ke dalam perangkaan timur tengah dan kemudian Eropa. Buku beliau diterjemahkan ke dalam bahasa Latin, Algoritmi de numero Indorum, menunjukkan kata algoritmi menjadi bahasa Latin.

Beberapa kontribusi beliau berdasar pada Astronomi Persia dan Babilonia, angka India, dan sumber-sumber Yunani.

Sistemasi dan koreksi beliau terhadap data Ptolemeus pada geografi adalah sebuah penghargaan untuk Afrika dan Timur –Tengah. Buku besar beliau yang lain, Kitab surat al-ard (“Pemandangan Bumi“;diterjemahkan oleh Geography), yang memperlihatkan koordinat dan lokasi dasar yang diketahui dunia, dengan berani mengevaluasi nilai panjang dari Laut Mediterania dan lokasi kota-kota di Asia dan Afrika yang sebelumnya diberikan oleh Ptolemeus.

Ia kemudian mengepalai konstruksi peta dunia untuk Khalifah Al-Ma’mun dan berpartisipasi dalam proyek menentukan tata letak di Bumi, bersama dengan 70 ahli geografi lain untuk membuat peta yang kemudian disebut “ketahuilah dunia”. Ketika hasil kerjanya disalin dan ditransfer ke Eropa dan Bahasa Latin, menimbulkan dampak yang hebat pada kemajuan matematika dasar di Eropa. Ia juga menulis tentang astrolab dan sundial.

Salah satu halamanAljabar karya al-Khwārizmī

Al-Kitāb al-mukhtaṣar fī ḥisāb al-jabr wa-l-muqābala (Arab: الكتاب المختصر في حساب الجبر والمقابلة atau Kitab yang Merangkum Perhitungan Pelengkapan dan Penyeimbangan) adalah buku matematika yang ditulis pada tahun 830. Kitab ini merangkum definisi aljabar. Terjemahan ke dalam bahasa Latin dikenal sebagai Liber algebrae et almucabala oleh Robert dari Chester (Segovia, 1145) dan juga oleh Gerardus dari Cremona.

Dalam kitab tersebut diberikan penyelesaian persamaan linear dan kuadrat dengan menyederhanakan persamaan menjadi salah satu dari enam bentuk standar (di sini b dan c adalah bilangan bulat positif)

  • kuadrat sama dengan akar (ax2 = bx)
  • kuadrat sama dengan bilangan konstanta (ax2 = c)
  • akar sama dengan konstanta (bx = c)
  • kuadrat dan akar sama dengan konstanta (ax2 + bx = c)
  • kuadrat dan konstanta sama dengan akar (ax2 + c = bx)
  • konstanta dan akar sama dengan kuadrat (bx + c = ax2)

dengan membagi koefisien dari kuadrat dan menggunakan dua operasi: al-jabr ( الجبر ) atau pemulihan atau pelengkapan) dan al-muqābala (penyetimbangan). Al-jabr adalah proses memindahkan unit negatif, akar dan kuadrat dari notasi dengan menggunakan nilai yang sama di kedua sisi. Contohnya, x2 = 40x4x2 disederhanakan menjadi 5x2 = 40x. Al-muqābala adalah proses memberikan kuantitas dari tipe yang sama ke sisi notasi. Contohnya, x2 + 14 = x + 5 disederhanakan ke x2 + 9 = x.

Beberapa pengarang telah menerbitkan tulisan dengan nama Kitāb al-ǧabr wa-l-muqābala, termasuk Abū Ḥanīfa al-Dīnawarī, Abū Kāmil (Rasāla fi al-ǧabr wa-al-muqābala), Abū Muḥammad al-‘Adlī, Abū Yūsuf al-Miṣṣīṣī, Ibnu Turk, Sind bin ‘Alī, Sahl bin Bišr, dan Šarafaddīn al-Ṭūsī.

Buku kedua besar beliau adalah tentang aritmatika, yang bertahan dalam Bahasa Latin, tapi hilang dari Bahasa Arab yang aslinya. Translasi dilakukan pada abad ke-12 oleh Adelard of Bath, yang juga menerjemahkan tabel astronomi pada 1126.

Pada manuskrip Latin,biasanya tak bernama,tetapi umumnya dimulai dengan kata: Dixit algorizmi (“Seperti kata al-Khawārizmī”), atau Algoritmi de numero Indorum (“al-Kahwārizmī pada angka kesenian Hindu”), sebuah nama baru di berikan pada hasil kerja beliau oleh Baldassarre Boncompagni pada 1857. Kitab aslinya mungkin bernama Kitāb al-Jam’a wa-l-tafrīq bi-ḥisāb al-Hind (“Buku Penjumlahan dan Pengurangan berdasarkan Kalkulasi Hindu“)Peta abad ke-15 berdasarkan Ptolemeus sebagai perbandingan.

Buku ketiga beliau yang terkenal adalah Kitāb ṣūrat al-Arḍ (Bhs.Arab: كتاب صورة الأرض “Buku Pemandangan Dunia” atau “Kenampakan Bumi” diterjemahkan oleh Geography), yang selesai pada 833 adalah revisi dan penyempurnaan Geografi Ptolemeus, terdiri dari daftar 2402 koordinat dari kota-kota dan tempat geografis lainnya mengikuti perkembangan umum.

Hanya ada satu kopi dari Kitāb ṣūrat al-Arḍ, yang tersimpan di Perpustakaan Universitas Strasbourg. Terjemahan Latinnya tersimpan di Biblioteca Nacional de España di Madrid. Judul lengkap buku beliau adalah Buku Pendekatan Tentang Dunia, dengan Kota-Kota, Gunung, Laut, Semua Pulau dan Sungai, ditulis oleh Abu Ja’far Muhammad bin Musa al-Khawarizmi berdasarkan pendalaman geografis yamg ditulis oleh Ptolemeus dan Claudius.

Buku ini dimulai dengan daftar bujur dan lintang, termasuk “Zona Cuaca”, yang menulis pengaruh lintang dan bujur terhadap cuaca. Oleh Paul Gallez, dikatakan bahwa ini sanagat bermanfaat untuk menentukan posisi kita dalam kondisi yang buruk untuk membuat pendekatan praktis. Baik dalam salinan Arab maupun Latin, tak ada yang tertinggal dari buku ini. Oleh karena itu, Hubert Daunicht merekonstruksi kembali peta tersebut dari daftar koordinat. Ia berusaha mencari pendekatan yang mirip dengan peta tersebut.

Buku Zīj al-sindhind (Arab: زيج “tabel astronomi”) adalah karya yang terdiri dari 37 simbol pada kalkulasi kalender astronomi dan 116 tabel dengan kalenderial, astronomial dan data astrologial sebaik data yang diakui sekarang.

Versi aslinya dalam Bahasa Arab (ditulis 820) hilang, tapi versi lain oleh astronomer Spanyol Maslama al-Majrīṭī (1000) tetap bertahan dalam bahasa Latin, yang diterjemahkan oleh Adelard of Bath (26 Januari 1126). Empat manuskrip lainnya dalam bahasa Latin tetap ada di Bibliothèque publique (Chartres), the Bibliothèque Mazarine (Paris), the Bibliotheca Nacional (Madrid) dan the Bodleian Library (Oxford).

Al-Khawārizmī juga menulis tentang Penanggalan Yahudi (Risāla fi istikhrāj taʾrīkh al-yahūdPetunjuk Penanggalan Yahudi“). Yang menerangkan 19-tahun siklus interkalasi, hukum yang mengatur pada hari apa dari suatu minggu bulan Tishrī dimulai; memperhitungkan interval antara Era Yahudi(penciptaan Adam) dan era Seleucid ; dan memberikan hukum tentang bujur matahari dan bulan menggunakan Kalender Yahudi. Sama dengan yang ditemukan oleh al-Bīrūnī dan Maimonides.

Beberapa manuskrip Arab di Berlin, Istanbul, Tashkent, Kairo dan Paris berisi pendekatan material yang berkemungkinan berasal dari al-Khawarizmī. Manuskrip di Istanbul berisi tentang sundial, yang disebut dalam Fihirst. Karya lain, seperti determinasi arah Mekkah adalah salah satu astronomi sferik.

Dua karya berisi tentang pagi (Ma’rifat sa’at al-mashriq fī kull balad) dan determinasi azimut dari tinggi (Ma’rifat al-samt min qibal al-irtifā’).

Beliau juga menulis 2 buku tentang penggunaan dan perakitan astrolab. Ibnu al-Nadim dalam Kitab al-Fihrist (sebuah indeks dari bahasa Arab) juga menyebutkan Kitāb ar-Ruḵāma(t) (buku sundial) dan Kitab al-Tarikh (buku sejarah) tapi 2 yang terakhir disebut telah hilang.